

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Visible spectrophotometric methods for the determination of darifenacin

P. Sai Praveen, V. Jagathi*, G. Devala Rao and G. Sudhakar Saibabu

K.V.S.R.Siddhartha college of pharmaceutical sciences, Vijayawada – 520 010, A.P, India.

ABSTRACT

Two simple and sensitive spectrophotometric methods have been developed for the estimation of Darifenacin in pure and pharmaceutical dosage forms. Method A is based on the formation of yellow colored ion-pair complex when the drug reacts with acidic dye Bromo Thymol Blue (BTB: λ max 415 nm). Method B is based on the molecular salt formation when the drug reacts with Picric acid (PA: λ max 400nm). The absorbance of the colored chromogen is measured against the corresponding reagent blanks. These methods have been statistically evaluated and found to be precise and accurate.

Keywords: Spectrophotometric, darifenacin, assay

*Corresponding author Email: vallurijagathi@gmail.com

RJPBCS

INTRODUCTION

Darifenacin which is chemically (S)-2-{1-[2-(2,3-dihydrobenzofuran-5yl) ethyl]-3-pyrrolidinyl}-2,2-diphenyl acetamide is a novel antimuscarinic agent, which has demonstrated clinical benefit in over-active bladder disease. Darifenacin is a selective muscarinic M3 receptor antagonist. A few number of methods such as HPLC, LC-MS were reported for the estimation of Darifenacin. Literature survey reveals that visible spectrophotometric methods have not been reported for its quantitative determination in its pure form and pharmaceutical formulations. In the present investigation two simple and sensitive spectrophotometric methods have been developed for the determination of Darifenacin. The developed methods involve the formation of colored complexes with BTB and PA. The colored chromogens produced showed absorption maximum at 415 and 400nm respectively. Beers law is obeyed in the concentration ranges of 5-25µg/ml and 10-50µg/ml respectively. The results of analysis for the two methods have been validated statistically and by recovery studies [1-6].

EXPERIMENTAL

Preparation of reagents

- 1. Bromo Thymol Blue Solution (0.1% w/v): 0.1 g of BTB dye was dissolved in 100 ml of distilled water.
- 2. Picric Acid Solution (0.4% w/v): 0.4 g of PA was dissolved in chloroform and made upto 100 ml with chloroform.
- 3. Acid phthalate Buffer pH 2.4 (I.P)
- 4. Standard drug solution: About 100mg of Darifenacin was accurately weighed and dissolved in 100 ml of water to obtain a stock solution of 1 mg/ml. This solution was further diluted with distilled water to get working standard solution of 100 μ g/ml.

Assay procedures

Method A: Aliquots of working standard solution of Darifenacin ranging from 0.5- 2.5 ml were transferred into a series of 125 ml separating funnels. To these 1 ml of pH 2.4 Acid phthalate buffer and 1 ml of 0.1% BTB dye was added. The total volume of aqueous phase was adjusted to 10 ml with distilled water and 10 ml of chloroform was added. The contents were shaken for 2 minutes. The two phases were allowed to separate and the absorbance of the separated organic layer (yellow colored chromogen) was measured at 415 nm against reagent blank. The amount of Darifenacin present in the sample solution was computed from its calibration curve.

Method B: Aliquots of working standard solution of Darifenacin ranging from 1 - 5 ml were transferred into a series of 10ml graduated tubes. To each tube 1 ml of Picric acid solution was added. The total volume was made upto 10 ml with chloroform. The absorbance of the yellow colored chromogen was measured at 400 nm against reagent blank within the stability period of 30 minutes. The amount of Darifenacin present in the sample solution was computed from its calibration curve.

RESULTS AND DISCUSSION

The optical characteristics such as beers law limits, Sandell's sensitivity, molar extinction coefficient, percent relative standard deviation, percent range of error (0.05 and 0.01 confidence limits) were calculated for both the methods and results are summarized in Table 1. The values obtained for the determination of Darifenacin in Pharmaceutical formulations (Tablets) by the proposed methods are presented in Table 2. Studies reveal that the excipients and other additives usually present in the Tablets did not interfere with the results obtained in the proposed methods.

April – June 2010

RJPBCS

Volume 1 Issue 2

Table 1: Optical Characteristics, Accuracy and precision of the proposed methods:

Parameters	Method A	Method B
λmax (nm)	415	400
Beers law limit (µg/ml)	5-25	10-50
Sandell's sensitivity(µg/cm²/0.001 Absorbance unit)	0.0291	0.0387
Molar absorptivity(Litre/mole ⁻¹ cm ⁻¹)	1.46×10^{4}	1.10×10^{4}
Regression equation(Y*)		
Slope(b)	0.0221	0.0108
Intercept(a)	0.1275	0.146
Correlation coefficient(r)	0.999	0.9992
% Relative Standard Deviation	1.20	0.84
% Range of error		
0.05 Significance level	0.689	0.592
0.01 Significance level	1.022	0.876

* Y = a + bx, where 'Y' is absorbance and x is the concentration of Darifenacin in μ g/ml ** For six replicates

Formulation (Tablets)	Labelled Amount	Amount found* by proposed method		% Recovery** by proposed method	
(12111)	(mg/Tab)	Method A (mg)	Method B (mg)	Method A	Method B
Tablet 1	7.5	7.42	7.44	98.54	98.85
Tablet 2	7.5	7.40	7.42	98.21	98.42
Tablet 3	15	14.88	14.86	98.12	98.50
Tablet 4	15	14.92	14.86	98.28	98.41

 Table 2: Estimation of Darifenacin in Pharmaceutical Formulations

* Average of six determinations, ** Recovery of amount added to the pharmaceutical formulation (Average of three determinations)

CONCLUSION

The proposed methods are applicable for the assay of drug Darifenacin and have an advantage of wider range under Beers law limits. The proposed methods are simple, selective and reproducible and can be used in the routine determination of Darifenacin in pure form and formulations with reasonable precision and accuracy.

April – June

2010 RJPBCS

Volume 1 Issue 2

Page No. 256

REFERENCES

- [1] The Merck Index, 13th edition, Merck Research laboratories, White House station, NJ, 2001, Pg: 495.
- [2] Martindale The Extra Pharmacoepia, 31st edition, Reynolds, J.E.F.,(ED), Royal Pharmaceutical Society, London, U.K, 2002, Pg : 465.
- [3] Alabaster AV. Life Sci 1997; 60: 1053-1060.
- [4] Quinn P, McIntyre P, Miner WD, Wallis RM. Br J Pharmacology 1996; 119:198.
- [5] PG Sunitha, P Karthikeyan, M Satish. Acta Ciencia Indica 2009;Vol. XXXV C (1):101.
- [6] K Ratna Kumari, S Vijaya Saradhi, G Devala Rao. Acta Ciencia Indica 2009;Vol. XXXV C(2):251.